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a b s t r a c t

A semianalytical methodology based on the integral transform technique is proposed to solve the diffu-
sion equation with concentration dependent diffusion coefficient in a spherical intercalation electrode
particle. The method makes use of an integral transform pair to transform the nonlinear partial differen-
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tial equation into a set of ordinary differential equations, which is solved with less computational efforts.
A general solution procedure is presented and two illustrative examples are used to demonstrate the use-
fulness of this method for modeling of diffusion process in lithium ion battery electrode. The solutions
obtained using the method presented in this study are compared to the numerical solutions.

© 2010 Elsevier B.V. All rights reserved.
onlinear diffusion
pherical coordinate

. Introduction

Lithium ion batteries typically consist of intercalation type
aterials as electrodes. Studies have shown that diffusion coeffi-

ient of lithium in the host materials (like carbon for example) is a
unction of concentration or state of charge (SOC) [1–3]. When the
ffects of thermodynamic variations [4–7] or the mechanical stress
7–9] on the diffusion process inside the solid phase are taken into
onsideration, the diffusion equation becomes nonlinear. In most of
he literature pertaining to mathematical modeling of lithium ion
atteries, diffusion inside the solid phase is treated as a linear prob-

em with constant diffusion coefficient [10–12]. Botte and White
sing a carbon based electrode as the modeling system, demon-
trated the importance of considering the nonlinear effects in the
olid phase [5]. In spite of several studies indicating the importance
f including the nonlinear effects for the solid phase of the battery
lectrode, very few models have included these effects because of
he added complexity [4–9]. The use of these models for the esti-

ation of parameters and cycle life studies is limited as it involves
dditional computational cost. There are certain successful efforts

aken in the past to simplify the rigorous physics based models
ith reasonable accuracy [13–15]. Most of these studies have been
eveloped for linear diffusion equation with constant coefficient in
he electrode particle.
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The objective of this paper is to extend these efforts and develop
a methodology to solve the nonlinear diffusion equation in a spheri-
cal intercalation electrode. The approach used in the present study
is based on the finite integral transform technique that has been
previously used to solve nonlinear boundary value problems in
heat transfer [16,17] and solute transport in porous media [18]. The
attractive feature of this method is the flexibility to handle most
of the nonlinear equations and ease of extension to incorporate
nonlinear boundary conditions and different geometries (including
cylindrical geometry).

The general methodology is presented in the following section.
Two simple illustrative examples are discussed to demonstrate
the potential of this technique as a competitive mathematical tool
for addressing nonlinear diffusion processes in the battery elec-
trode. The Eigen function expansion method presented by Tsang
and Hammarstrom [19] is used to further simplify the problem for
the two cases considered in this study.

2. Model description

For the purpose of this study the electrode particle is consid-
ered to be a sphere and the discharge process in the electrode is
described using the single particle model [20]. Diffusion of lithium
inside the particle is described by the following equation:

∂C 1 ∂
[

2 ∂C
]

∂t
=

r2 ∂r
Deff r

∂r
(1)

where Deff is the concentration (or SOC) dependent diffusion coeffi-
cient arising due to incorporation of the thermodynamic variation
or including the effect of mechanical stress on the diffusion process

dx.doi.org/10.1016/j.jpowsour.2010.06.081
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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Nomenclature

C concentration of lithium in the solid phase
(mol cm−3)

C̄ dimensionless concentration of lithium in particle
D diffusion coefficient of lithium in the particle includ-

ing the nonlinear effects (cm2 s−1)
D̄ dimensionless diffusion coefficient of lithium in the

particle
E Young’s modulus (N cm−2)
F Faraday’ s constant, 96,487 (C mol−1)
in applied current density (A cm−2)
j rate of the electrochemical reaction at the particle

surface (mol cm−2 s)
K number of terms considered in the expansion
M molecular mass (g mol−1)
n number of electrons involved in electrochemical

reaction.
R gas constant, 8.314 (J mol−1 K)
Rp radius of the particle (Cm)
r radial coordinate (Cm)
t time (S)
T temperature (K)
u displacement vector (Cm)
V̄Li partial molar volume of lithium in intercalation

material (cm3 mol−1)
V cell potential (V)

Greek Symbols
� nonlinear contribution function in diffusion coeffi-

cient
� activity coefficient in the solid phase
� dimensionless flux at the surface of the particle
� eigenvalues
� Poisson’s ratio
� dimensionless coordinate
	 density of the particle (g cm−3)

h hydrostatic stress (N cm−2)

r radial component of stress (N cm−2)

t tangential component of stress (N cm−2)
� kernel of the transform or eigenfunction
� dimensionless time
ω̄ nonlinear contribution to the diffusion process

Subscripts
eff effective
k number of terms
l number of terms
max maximum
n number of terms
r radial

o
p
fl
b

−

w
t

s separator
t tangential

f lithium into the host material. At the surface of the electrode
article electrochemical reaction takes place and this dictates the
ux of lithium into the particle. The flux at the surface is given
y:

∂C
∣∣ i
Deff ∂r
∣∣
r=Rp

= j = n

n F
(2)

here j is the rate of the electrochemical reaction at the elec-
rode surface which is a proportional to local current density at
wer Sources 196 (2011) 442–448 443

the particle surface (in). n is the number of electron involved in the
electrochemical reaction and F is the Faraday’s constant.

The flux of lithium at the center of the particle is given by:

−Deff
∂C

∂r

∣∣∣∣
r=o

= 0 (3)

The initial condition is described by:

C(r, 0) = C0 (4)

3. Solution procedure

3.1. Dimensionless governing equations

The system of Eqs. (1)–(4) is cast into a more convenient form
by defining the following dimensionless variables:

� = r

Rp
; � = D0t

R2
p

; C̄ = C − C0

Cmax
(5)

where Rp is the radius of the particle, C0 is the initial concentration
of lithium in the particle, Cmax is the maximum stoichiometric con-
centration of lithium in the host. D0 is the diffusion coefficient of
lithium in the particle with the initial concentration of lithium C0.

The governing equation (Eq. (1)) is expressed using the above
dimensionless variables as given below:

∂C̄

∂�
= 1

�2

∂

∂�

[
D̄

(
C̄
)

�2 ∂C̄

∂�

]
, 0 < � < 1 (6)

where D̄
(

C̄
)

= Deff /D0.
And the boundary conditions and initial condition described in

Eqs. (2)–(4) are modified as follows:

− D̄
∂C̄

∂�

∣∣∣∣
�=o

= 0 (7)

− D̄
∂C̄

∂�

∣∣∣∣
�=1

= � (8)

C̄ (� = 0) = 0 (9)

where � is the dimensionless flux of lithium at the surface of the
particle and is given by the following expression:

� = inRP

n F CmaxD0
(10)

The flux can be a function of concentration or a constant based on
the problem.

3.2. Solution methodology

The governing equation (Eq. (6)) and the boundary conditions
described in Eqs. (7)–(9) can be reduced to a set of ordinary differ-
ential equations by making use of the integral transform and the
inverse transform pair described in the following section.

The integral transform for the spherical coordinate is given
below [17]:

T (�n, �) = Tn (�) =
∫ 1

�=0

�2�
(

�n, �
)

C̄
(

�, �
)

d� ; n = 1 . . . K (11)
where �(�n,�) is the kernel of the transform and �n’s are the eigen-
values which are obtained by solving an auxiliary homogenous
eigenvalue problem corresponding to the governing equation and
boundary conditions. For simplicity �(�n,�) is represented as �n(�)
from this point onwards in the text.
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The inverse of the transform is given by the following expression
17]:

¯ =
K∑

n=1

�n

(
�
)

Nn
Tn (�) (12)

here K is a finite number of terms considered in the expansion and
he norm of the integral transformation, N is given by the following
xpression [17]:

n =
∫ 1

0

�2�2
n

(
�
)

d� ; n = 1 . . . K (13)

he homogeneous eigenvalue problem corresponding to diffusion
n a spherical particle is given by:

1
�2

∂

∂�

[
�2

∂�n

(
�
)

∂�

]
− �2

n�n(�) = 0 (14)

he homogeneous boundary conditions are expressed as:

∂�n

∂�

∣∣∣∣
�=o

= 0; − ∂�n

∂�

∣∣∣∣
�=1

= 0 (15)

olution of Eq. (14) subjected to the boundary conditions described
n Eq. (15) yields the kernel or the eigenfunctions of the system,

hich are given by:

n

(
�
)

=
sin

(
�n�

)
�

(16)

nd the eigenvalues are the roots of the following equation:

n cot(�n) = 1 (17)

sing the transformation given in Eq. (12) on the governing equa-
ion (Eq. (6)) the following equation is obtained:

1

0

�2�n

(
�
) ∂C̄

∂�
d� =

∫ 1

0

�n
∂

∂�

[
D̄�2 ∂C̄

∂�

]
d� (18)

he expression on the left-hand side of the Eq. (18) can be rewritten
sing the transform described in Eq. (12) as shown below:

1

0

�2�n(�)
∂C̄

∂�
d� = ∂

∂�

[∫ 1

0

�2�n(�) C̄ d�

]
= dTn(�)

d�
(19)

ubstitution of Eq. (19) into Eq. (18) yields the following modified
overning equation:

dTn(�)
d�

=
∫ 1

0

�n
d

d�

[
D̄�2 dC̄

d�

]
d�; n = 1 . . . K (20)

he concentration dependent diffusion coefficient in Eq. (20) can
e expressed as a polynomial expression in terms of dependent

ariable (C̄) using simple arithmetic manipulations for most of the
roblems encountered in battery modeling. In this study the fol-

owing general functional form of the expression is considered:

¯ = 1 + � C̄ (21)

here � can either be a constant or a function of C̄. The functional
orm of the diffusion coefficient Eq. (21) is substituted in the right-
and side expression of Eq. (20). The integral on the right side of
q. (20) is evaluated using Green’s integral theorem [21] as shown
elow:
wer Sources 196 (2011) 442–448

∫ 1

0

�n
d

d�

[(
1 + � C̄

)
�2 dC̄

d�

]
d� =

{∫ 1

0

�2C̄
1
�2

d

d�

[
�2 d�n

d�

]
d�

}

+
{∑

S=0,1

[
�n

dC̄

d�
− C̄

d�n

d�

]
S

}

+
{∫ 1

0

�n
d

d�

[(
� C̄

)
�2 dC̄

d�

]
d�

}
(22)

Making use of Eqs. (14)–(16) and the integral transform defined in
Eqs. (11) and (22) is rewritten as given below:∫ 1

0

�n
d

d�

[(
1 + � C̄

)
�2 dC̄

d�

]
d� = −�2

nTn(�) − �n(1)�

+
∫ 1

0

�n
d

d�

[
(� C̄)�2 dC̄

d�

]
d�

(23)

Substitution of Eq. (23) into Eq. (20) yields the following set of
differential equations:

dTn(�)
d�

+ �2
nTn(�) =

∫ 1

0

�n
d

d�

[
(� C̄)�2 dC̄

d�

]
d� − �n(1)�;

n = 1 . . . K (24)

The inverse transform described in Eq. (12) for the dependent vari-
able C̄ is substituted in Eq. (24) and the resulting equation can be
rewritten in the matrix form as given below:

dT(�)
d�

+ A(T, �) T(�) = G(T, �) (25)

where the matrices A and G depend on the functions � and � respec-
tively.

The set of coupled nonlinear ordinary differential equations
(ODEs) described in Eq. (25) is solved numerically to obtain the
transform function Tn(�) and the concentration profile is obtained
using the inverse function given by Eq. (12). The solution to the
diffusion problem is therefore analytical with respect to the spatial
coordinate, but numerical with respect to time. For certain simple
cases complete analytical or approximate solution is possible as
demonstrated in Ref. [19].

Two examples are discussed in the following section along with
a procedure similar to that presented in Ref. [19], to further simplify
the complexity of the differential equations described in Eq. (25).

4. Discussion

4.1. Examples: case A

Let us consider the effect of mechanical stress on the diffusion
of lithium into the intercalation material during the galvanos-
tatic discharge process. The intercalation material is treated as a
binary solution and the diffusion of lithium into the host material
is described by [7–9]:

∂C = 1 ∂
[

Dr2

{
∂C + C

(
V̄ − M

)
∂
h

}]
(26)
∂t r2 ∂r ∂r RT 	 ∂r

where V̄ is the partial molar volume of lithium in the host, M is
the molecular mass of the binary solution, 	 is the density of the
solution and 
h is the hydrostatic stress or pressure.
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reduced towards the end of discharge. Therefore for a low value of
ω̄, the results predicted by the method presented in the study are
valid even at high rates of discharge and the percentage of error in
prediction is less than 1%.
S. Renganathan, R.E. White / Journa

For an isotropic material Eq. (26) is rewritten as follows [see
ppendix for derivation]:

∂C

∂t
= 1

r2

∂

∂r

[
Deff r2 ∂C

∂r

]
(27)

he effective diffusion coefficient is given by the expression:

eff = D0

[
1 + ω̄

(
C − C0

Cmax

)]
(28)

here ω̄ is given by the following expression:

¯ = − 2V̄ECmax

9RT(1 − �)

(
V̄ − M

	

)
(29)

n Eq. (29), E is the Young’s modulus and � is the Poisson’s ratio of
he material. For the galvanostatic discharge process the flux at the
urface is given by:

Deff
∂C

∂r

∣∣∣∣
r=Rp

= i

n F
(30)

here i is the applied current density, n is the number of elec-
ron involved in the electrochemical reaction and F is the Faraday’s
onstant.

Use of dimensionless variables defined earlier by Eq. (5) reduces
he governing Eq. (27) and boundary conditions to the same form as
escribed by Eqs. (6)–(9). The diffusion coefficient for this example
epends linearly on the concentration of lithium and � described

n Eq. (21) is a constant parameter (ω̄).

¯ = 1 + � C̄ = 1 + ω̄C̄ (31)

¯ is the measure of the contribution of stress or mechanical energy
owards the diffusion process.

The integral transform approach described in the previous sec-
ion is used to reduce the nonlinear diffusion equation to a set of
DEs which is given below:

dTn(�)
d�

=
K∑

k=1

K∑
l=1

Tk(�)

∫ 1

0

�n
∂

∂�

[
�2

(
D̄l

) ∂�k

(
�
)

∂�

]

d�; n = 1 . . . K (32)

s a further simplification the concentration dependent diffusion
oefficient is expanded using the first eigenfunction. This has been
emonstrated earlier for a planar geometry in Ref. [19]:

¯ = 1 + ω̄C̄ = 1 + ω̄�l(�)Tl(�); l = 1 (33)

fter substitution of Eq. (33) into Eq. (32) and considering the first
lement (n = 1), the principal diagonal elements (n = k) of the matrix,
he nonlinear ODEs given by Eq. (32) are simplified as follows:

dTn(�)
d�

+ (�2
n + B1n)Tn(�) = �n(1)�

1 + ��n(1)T1(�)
; n = 1 . . . K (34)

here

1n = ω̄T1(�)

∫ 1

0

�n
∂

∂�

[
�2�1(�)

∂�n(�)
∂�

]
d� (35)

he set of equations described in Eq. (34) is nonlinear with respect
o T when n = 1 and linear when n = 2. . .K. The Eq. (34) is solved for
he case when n = 1 and the vector B given in Eq. (35) is updated for
ach time step (�). This solution is then used in the subsequent

alculations of T for n = 2. . .K. Hence the set of nonlinear ODEs
n = 1. . .K) are decoupled to a single nonlinear ODE (n = 1) and a
et of linear ODEs (n = 2. . .K). In this example K is 9 and the set of
DEs is solved using gear’s numerical method in the Mathemati-
al package, Maple [22]. The results obtained are compared to the
Fig. 1. Comparison of concentration profiles within the particle obtained using the
semianalytical method (SA) and numerical solution (N) for � = 0.1.

corresponding full numerical solutions obtained using the finite
element package, COMSOL Multiphysics [23].

It can be observed from Eqs. (27)–(31) that the concentration
profile depends on two important parameters: (i) the reaction rate
or dimensionless flux at the surface of the particle (�) and (ii) the
nonlinear contribution to diffusion process (ω̄). For a given interca-
lation material, ω̄ is constant (assuming all mechanical properties
are constant). Therefore the flux at the surface of the particle deter-
mines the concentration profile within the particle. The first set of
simulations was carried out for a low value of ω̄ of 0.1 and two
different values of � (0.3, 2). For a particle of size 8.5 �m and a con-
stant diffusion coefficient value of 1 × 10−10 cm2 s−1 [9,10] at the
initial concentration, the value of � = 0.3 corresponds to 1 C rate
of discharge. The solutions are compared at different time dur-
ing the discharge process and the results for the two flux values,
� are shown in Figs. 1 and 2 respectively. It can be observed that
the results agree well with each other of low value of � (0.3) for
all time. At high value of � (2), the surface concentration varies
noticeably during the beginning of discharge but the deviation is
Fig. 2. Comparison of concentration profiles within the particle obtained using the
semianalytical method (SA) and numerical solution (N) � = 2.
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of discharge (or �). The relative error is less than 1.2% for all the
ig. 3. Error in prediction of surface concentration relative to the numerical solution
or three different nonlinear parameter (ω = 0.1, 1 and 3).

Fig. 3 compares the percentage of the relative error in the surface
oncentration for three different values of nonlinear contribution
¯ . Since the electrochemical reaction at the interface depends on
he concentration at the surface of the particle, prediction of it with
easonable accuracy determines validity of the approximation used
n this study. The values of ω̄ considered in this study are: 0.1, 1
nd 3. It can be observed from Fig. 3 that up to a value of � = 1.8, the
rror in surface concentration predictions are less than 5% for all
he cases presented in this study. This value of � corresponds to 6 C
or the particles considered in this study. The deviation of the solu-
ion obtained from the method presented in this study from the
umerical solution increased with an increase in the value of ω̄.
his is expected as the nonlinear terms are approximated based on
he first eigenfunction. Value of ω̄ depends on the extent of change
n molar volume of the material during intercalation (V̄). Larger the
hange in volume, the larger is the value of ω̄. Therefore more terms
an be included to improve the accuracy of the solution for mate-
ials with larger values of ω̄. The model presented here provides a
easonably accurate prediction over a wide range of parameter val-
es and can be used with reasonable accuracy for materials with

ow to medium degree of volume expansion (ω̄ = 3 being highest
n the present study).

.2. Case B

In the second example considered in this study, lithium and the
ntercalation host material (carbon in this present case) are con-
idered as a binary nonideal solid solution. The interesting and
nique nature of the intercalation process in carbon makes it an

deal candidate for this study. Intercalation of lithium in carbon
nvolves staging. Diffusion coefficient of lithium in each of the
tages varies significantly resulting in a concentration dependent
iffusion coefficient. Modeling of staging phenomenon with all the
etails is beyond the scope of this study, hence only the approach
o include the concentration dependent diffusion coefficient is pre-
ented below. The thermodynamic variation due to the nonideal
ature of the intercalation electrode is related to the diffusion coef-
cient by the following expression [4–6]:

D

D0
= 1 + d ln �

d ln C̄
(36)
here 1 + (d ln �/d ln C̄) represents the lithium ion-ion inter-
ction. The activity coefficient (�) is replaced by an interaction
otential term [4] and concentration dependent diffusion coeffi-
Fig. 4. Comparison of potential as a function of discharge time obtained using the
semianalytical method (SA) and the numerical solution (N) for � = 1.

cient Eq. (36) is modified as shown below:

D̄ = 1 + d ln �

d ln C̄
= 1 + � C̄ = 1 + C̄(1 + C̄)

F

RT

dV

dC̄
(37)

Comparison of Eqs. (37) and (21) shows that � for this case is a
function of the concentration C̄. The interaction potential (V) as a
function of concentration C̄ used in Eq. (37) is obtained from Ref.
[4] and � in Eq. (37) is given by the following expression:

� = (1 + C̄)
F

RT

[
a1 + a2C̄ + a3C̄2 + a4C̄3 + a5C̄4 + a6C̄5

]
(38)

The values of the parameters [4] a1–a6 respectively are 1.9852,
5.3886, −67.56, 171.9, −173.52 and 61.656.

Similar to the example case A, the concentration dependent dif-
fusion coefficient is expanded using the first Eigen function. The
first element (n = 1) and the diagonal elements are considered. The
set of differential equations is given by:

dTn(�)
d�

+
(

�2
n + B1n

)
Tn(�) = �n(1)�∑6

m=1amTm
1 �1(1)m

{
1 + �1(1)T1(�)

} ;

n = 1 . . . K (39)

The nonlinear term B is given below:

B1n =
6∑

m=1

amTm
1

∫ 1

0

�n
∂

∂�

[
�2�m

1 (1 + �1T1(�))
∂�n(�)

∂�

]
d� (40)

The set of ODEs in Eq. (39) are solved using gear’s numerical method
in the Mathematical package, Maple using K = 9. The concentration
at the surface of the particle is used along with a linear kinetic
expression [4] to calculate the potential at the interface.

The solution obtained using this approach is compared with
numerical solution for a dimensionless flux � = 0.2 (equivalent to 1 C
for this simulation) as a function of dimensionless discharge time
(�). The results are depicted in Fig. 4. The difference in deviation
of results from that predicted using numerical solution decreases
with increase in time and beyond a dimensionless discharge time
� > 0.35 the results are in close agreement. The relative error in sur-
face concentration predicted using the present approach and that
of the numerical solution are shown in Fig. 5 for different rates
parameter values considered in this study (up to 4 C or a � value of
1).

With the help of two illustrative cases the usefulness of this
method to model diffusion process in the intercalation elec-
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ig. 5. Error in prediction of surface concentration relative to the numerical solution
or various dimensionless flux values at the surface of the particle.

rodes has been demonstrated. Though these simple examples
nly consider a single spherical and isotropic particle as the
odel geometry, this methodology can be extended to materials
ith anisotropic properties and undergoing phase transforma-

ion [18,24]. This methodology can be effectively used as a model
eduction/reformulation technique for model involving multiple
lectrodes or battery stacks.

. Conclusions

A simple and straightforward methodology to solve nonlinear
iffusion equation in spherical intercalation electrode is presented.
wo different case studies incorporating nonlinear effects on dif-
usion equation are presented. The first case considered includes
he effect of mechanical stress on the diffusion process and in
his case the diffusion coefficient had a linear variation with com-
osition. The second case study considered the nonlinear effect
ue to lithium ion-ion interaction within the solid phase and in
his case the diffusion coefficient was a polynomial function of
oncentration. In both the cases, results obtained from the semi-
nalytical approach presented in this study were found to be in
ood agreement with the numerical solution. The average error in
he prediction was found to be 1–5%. The significant decrease in the
omputational efforts combined with a reasonable degree of accu-
acy in results obtained makes the approach presented in this paper
good alternative for complete numerical solution. This technique
an also be used as a tool for parameter estimation.

cknowledgement

The authors are grateful for the financial support of this project
rovided by the National Reconnaissance Office (NRO) under con-
ract # NRO-000-03-C-0122.

ppendix A.

Diffusion of lithium into the host material is described by [7–9]:

∂C 1 ∂
[ {

∂C C
(

M
)

∂

}]
∂t
=

r2 ∂r
Dr2

∂r
+

RT
V̄ −

	
h

∂r
(A-1)

he hydrostatic stress (
h) is the average of the three principle com-
onents of the stress tensor and for a spherical particle it can be

[
[
[
[
[
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expressed as shown below [25]:


h = 
r + 2
t

3
(A-2)

The gradient of hydrostatic stress inside the particle is expressed
as:

∂
h

∂r
= ∂

∂r

(

r + 2
t

3

)
(A-3)

where the radial component of the stress is given by the following
expression [25]:


r = E

(1 + �)(1 − 2�)

[
(1 − �)

∂u

∂r
+ 2�

u

r
− (1 + �)

V̄

3
(C − C0)

]
(A-4)

The tangential component of the stress is given by [25]:


t = E

(1 + �)(1 − 2�)

[
�

∂u

∂r
+ u

r
− (1 + �)

V̄

3
(C − C0)

]
(A-5)

where C0 is the stress free concentration in the electrode.
The gradient of the hydrostatic stress inside the particle is mod-

ified using Eqs. (A-4) and (A-5) as follows:

∂
h

∂r
= E

3(1 − 2�)

[
1
r2

∂

∂r

(
r2 ∂u

∂r

)
− V̄

∂C

∂r

]
(A-6)

The equation of momentum inside the spherical particle which is
in mechanical equilibrium is as follows [22]:

∂
r

∂r
+ 2

r
(
r − 
t) = 0 (A-7)

In terms of the radial displacement u, Eq. (A-7) can be re-written
using the Eqs. (A-4) and (A-5) as follows:

1
r2

∂

∂r

(
r2 ∂u

∂r

)
= 1 + �

1 − �

V̄

3
∂C

∂r
(A-8)

The gradient of the hydrostatic stress inside the particle can be
expressed using Eqs. (A-6) and (A-8) as follows:

∂
h

∂r
= − 2V̄E

9(1 − �)
∂C

∂r
(A-9)

Therefore the diffusion equation is modified as given below:

∂C

∂t
= 1

r2

∂

∂r

[
Deff r2 ∂C

∂r

]
(A-10)

The effective diffusion coefficient is given by the following expres-
sion:

Deff = D0

[
1 − 2V̄ECmax

9RT(1 − �)

(
V̄ − M

	

)(
C − C0

Cmax

)]
(A-11)
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